

Integrated Microwave Sensors for Cavity-Length Measurement in Machine Engineering

Alexander Megej, *Member, IEEE*, Klaus Beilenhoff, *Member, IEEE*, Martin Schüßler, *Member, IEEE*, Andreas Ziroff, Bastian Mottet, *Student Member, IEEE*, Oktay Yilmazoglu, *Student Member, IEEE*, Kabula Mutamba, Claus D. Hamann, Roman Baican, *Senior Member, IEEE*, and Hans L. Hartnagel, *Fellow, IEEE*

Abstract—A novel measurement procedure using microwaves is presented. The implemented sensor prototype determines the length of a cylindrical cavity (e.g., a hydraulic system) with submillimeter accuracy in real time. The principle of operation is based on the detection of the resonance-frequency distribution in a cavity resonator.

Index Terms—Algorithms, intelligent sensors, length measurement, mechanical variables measurement, microwave measurements, MODFET integrated circuits, position measurement, real-time systems.

I. INTRODUCTION

MICROWAVE sensors offer a possibility to implement novel and cost-effective measurement systems for science and industrial applications. Extensive use of microwave monolithic integrated circuits allows one to enable contact-less, nondestructive, and real-time measurements.

Depending on how the measurement is arranged and which physical phenomenon is used, microwave sensors may be divided into several groups [1]. This paper deals with a measurement system that is based on the resonance principle. There has been a number of sensors employing this phenomenon (e.g., [2]–[4]).

Fig. 1 shows a schematic representation of a structure that has been used very often in the area of mechanical engineering. It consists of a metallic cylinder that is closed from one side. From the other side, a movable piston is placed into this cylinder, which is filled with a dielectric medium. As an example, a robotic arm can be considered. However, hydraulic systems of a variety of machines and different shock-absorber systems use a similar arrangement.

Due to the fact that—in the case of the measurement problem shown in Fig. 1—one has to deal with a closed cavity, there

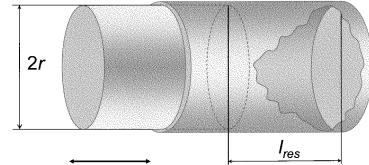


Fig. 1. Schematic description of the measurement problem.

is only a limited number of possible sensor solutions. For example, it could be a distance measurement based on inductive or capacitive distance sensing [5]. However, the measurement range is rather limited. Further potential solutions include pulse (e.g., [6]), frequency-modulated continuous-wave (FMCW) radars (e.g., [7]), and time-domain reflectometry (e.g., [8]). However, these methods can only hardly be used for the measurement of small distances within a cylinder structure due to a high complexity on the electronic side or due to a very difficult coupling.

This paper defines a measuring procedure that determines the length l_{res} of the resulting cavity without disturbing mechanical properties of the system. Furthermore, measurements can be performed several times per second. The basic idea relies on the consideration of the resonance-frequency distribution within a cavity (Section II-A). The proposed measurement principle is not limited to the cylindrical cavity shape. It can be also used to determine the length of a cavity with an arbitrary cross section.

A demonstrator for the length measurement in cylindrical cavities was manufactured (Section II-B) to prove the feasibility of the proposed sensor principle. The dimensions of the prototype have been chosen in such a way that the prototype models an automotive shock absorber. This application sets tight requirements to the system to be developed: fast operation, contact-less measurement, no special calibration, cost-effective implementation for possible mass production, temperature stability, and resistance to a hostile environment. The integrated sensor was tested, also in view of its possible use in industrial applications (Section III).

A microwave sensor delivers an output signal in any way containing information about the unknown parameter to be measured. In the case discussed in this work, the information about the cavity length is incorporated into the resonance pattern. Thus, the desired value has to be mathematically extracted from an electrical signal. In Section IV, an algorithm implementation is described, which evaluates the actual cavity length from the sensor-output signal and completes the entire measurement system.

Manuscript received March 13, 2002; revised August 19, 2002. This work was supported by Adam Opel AG, Rüsselsheim, Germany.

A. Megej is with the Laboratory for EM-Fields and Microwave Electronics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland (e-mail: megej@ieee.org).

K. Beilenhoff is with United Monolithic Semiconductors, F-91401 Orsay Cedex, France.

M. Schüßler, B. Mottet, O. Yilmazoglu, K. Mutamba, and H. L. Hartnagel are with the Institut für Hochfrequenztechnik, Technische Universität Darmstadt, D-64283 Darmstadt, Germany.

A. Ziroff is with Siemens Corporate Technology, Microwave Systems, D-81739 Munich, Germany.

C. D. Hamann and R. Baican are with Adam Opel AG, D-65407 Rüsselsheim, Germany.

Digital Object Identifier 10.1109/TMTT.2002.805148

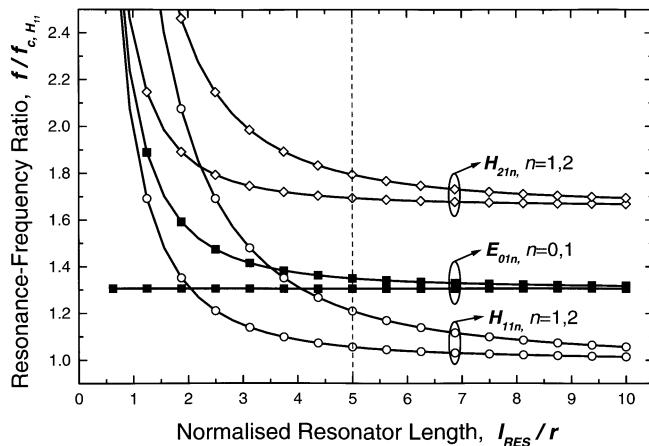


Fig. 2. First three resonance modes within a cylindrical cavity (without coupling). Higher resonance numbers n of a particular mode correspond to the resonances with higher frequencies.

II. OPERATION PRINCIPLES AND SYSTEM DESIGN

A. Measurement Procedure

The principles of the sensor operation are based on the fact that the initial mechanical structure from Fig. 1 can be considered as a cylindrical cavity resonator. The resonance frequencies in a cavity strongly differ from one mode to another. Further, they usually are a function of length for every single mode. Fig. 2 demonstrates several frequencies for the first three resonance modes of an ideal cylindrical cavity. In this figure, the resonance-frequency ratio—the normalizing factor is the cutoff frequency $f_{c,H_{11}}$ of the basis cylindrical waveguide mode—is shown as a function of the normalized length l_{res}/r , where r is the resonator radius.

According to Fig. 2, only certain resonance frequencies correspond to a particular resonator-length value (e.g., dashed line). This resonance-frequency sample (taken from a particular frequency range) is unique for every resonator length. Therefore, if a resonance-frequency set is fixed for a particular resonator length, this length value—which is the parameter to be determined—can be unequivocally extracted.

For sensor applications, the resonance mode E_{01n} is of a special interest. It is the first mode that owns a basis resonance (E_{010}), whose frequency does not depend on the resonator length. Therefore, it can be used as a stable calibrating reference allowing one to take into account only the resonance-frequency distribution (or the position of resonances in respect to each other) and not the absolute value of resonance frequencies. This calibrating reference can be also used to measure the parameters that exhibit only a weak time dependence (e.g., the dielectric permittivity ϵ_r or the temperature of operation).

The advantage of the distribution technique is the independence of the measurement principle from the absolute values of resonance frequencies if a particular reference is available. For the sensor system under consideration, this requirement is fulfilled by the resonance modes with a first resonance exhibiting no dependence on the resonator length. Within a circular cylindrical cavity resonator, these modes are: $E_{01n}, E_{11n}, E_{21n}, \dots$. Furthermore, using the resonance-frequency distribution, the measurement principle ideally becomes independent from the

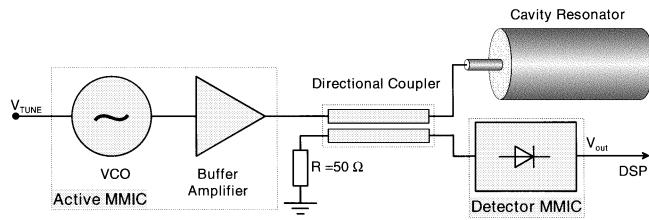


Fig. 3. Block schematic of the sensor system for cylindrical cavity-length measurement.

material characteristics of the dielectric medium filling the resonator. This behavior can be used for the mathematical evaluation of the sensor output.

The following procedure can be employed to implement the measurement idea described above.

- 1) Choose a particular frequency range according to the dimensions of the cylinder, whose length has to be measured. The latter choice has to be done also in view of a particular resonance mode to be used (e. g., E_{01n} from Fig. 2). The stimulation of a particular resonance mode allows one easier evaluation of the actual resonator length. Further, the wider the chosen bandwidth range is the lower the minimal resolvable length becomes and the higher the sensor resolution is.
- 2) Within the chosen frequency range, tune the frequency from one bound to another. In this way, resonances are stimulated within the cavity resonator, which has a particular length value. These resonances appear at a certain value of a particular control variable (e.g., the tuning voltage of a signal source or time). The frequency tuning can be provided by a signal source generating a signal over the chosen frequency band.
- 3) Detect the appearing resonances as a function of the chosen parameter and calculate the actual resonator length from the output function.

B. Sensor-System Structure

According to the measurement procedure for the length determination of a cylindrical cavity, a sensor concept is proposed whose structure is depicted in Fig. 3.

A sinusoidal signal generated by a voltage-controlled oscillator (VCO) is amplified by a buffer amplifier and then it is applied to the cavity resonator over a simple directional coupler. The buffer amplifier reduces the influence of the variable resonator-input impedance on the VCO performance. The frequency of the microwave signal can be tuned within the chosen frequency range. In this way, the corresponding resonances of the cavity are stimulated. Here, the E_{01n} mode is used for length determination. To excite this mode only—which is a rotation-symmetric one—a specific coupling structure has to be employed.

At the resonance frequencies of the cavity, the signal power is translated into the resonator. For all other frequency values, the signal is simply reflected back to the coupler. The reflected signal is fed via the coupler to the detector circuit, which detects the power level of the reflected signal. The variation of the power level over frequency results in an alteration of the

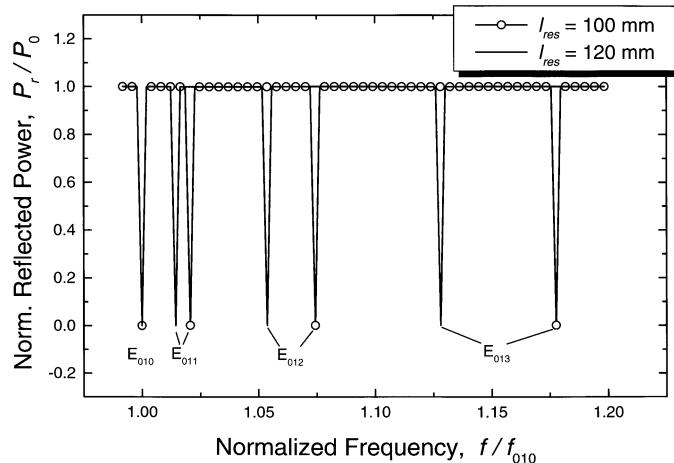


Fig. 4. Visualization of the measurement principle. Power of the signal reflected from the resonator cavity is shown as a function of the normalized frequency. The E_{01n} resonance mode is considered.

detector-output voltage. The detector output now contains the information about the distribution of the resonance frequencies within the cavity resonator. Passing this signal to the digital-signal processing (DSP) unit, the actual resonator length can be calculated using a mathematical algorithm.

Instead of recognizing a voltage drop in the plain of the electronic circuitry, the sensor measures the level of the signal power reflected from the resonator. The frequency values, at which the power dissipation exhibits its maximum, are the resonance frequencies of the resonator together with the coupling structure. Also, the behavior of the resonator including its coupling—and hence, the resonance-frequency values—can be analytically determined.

Fig. 4 visualizes the operation principle of the sensor system. It presents the normalized power level of the reflected signal at the input of the detector circuit as a function of the normalized frequency for an ideal case. The reference factors are the output power level P_0 of the signal source and the frequency of the frequency f_{010} of the E_{010} resonance.¹ The chart clearly demonstrates the relative position of the cavity resonances for two different resonator lengths. At these resonances, the value of the reflected power is zero. If the position of the resonances is correctly determined by the detector circuit, the length of the resonator can be calculated.

Generally, the proposed measurement system can be employed with a cavity having arbitrary parameters. In the case of the demonstrator described here, these variables are the dimensions of the cylinder (its radius and length range) and the art and characteristics of the filling material, which can be any gas or any dielectric liquid. These parameters alter from one application to another. Therefore, the frequency bandwidth of operation and resonator coupling have to be defined for a particular mechanical system.

In this work, a sensor system was designed, manufactured, and tested for a cavity, whose parameters are listed in Table I. The dielectric medium is the REPSOL vegetable oil. This cavity has the same characteristics as the considered automotive shock

TABLE I
SUMMARY OF CAVITY PARAMETERS

Dielectric Constant	ϵ_r	2.2
Magnetic Constant	μ_r	1.0
Resonator Radius	r/mm	16
Resonator Length	l_{res}/mm	30–200

absorber. It was chosen to implement a prototype of a sensor system, which should demonstrate the feasibility of the proposed measurement principle and to investigate its performance.

1) *Cavity Coupling Issues:* Because of the basic idea behind the cavity-length measurement that is described above, only the E_{01n} resonance mode is taken into account. Moreover, the excitation of other modes such as the H_{11n} complicates the length-evaluating procedure. Therefore, the coupling of these further resonance modes should be made as small as possible. On the other hand, the coupling of the E_{01n} mode has to be strong to allow one a clear detection of single resonances. Due to the radial-symmetrical nature of the E_{01n} mode, the coupling structure has to be chosen to be radially symmetric. It is obvious that radially symmetric field probes should stimulate the modes with $\partial/\partial\varphi = 0$ only.

The proposed particular implementation of the field probe is a disc at the end of a pin that provides coupling between the resonator cavity and a coaxial waveguide. Measurements of a coupled cavity resonator by means of an HP8510 network analyzer showed that the rotation-symmetrical modes (E_{01n} , E_{02n}) are solely excited using this kind of coupling.

2) *Electronic Part of the Sensor:* As shown in Fig. 3, the electronics part of the sensor contains a VCO, a buffer amplifier, and a detector circuit. For the considered frequency range, the circuitry could be realized using either a hybrid microwave integrated circuit (MIC) or monolithic-microwave integrated-circuit (MMIC) technique. In view of the size reduction and the possible series production, the MMIC technology is a very interesting alternative. Due to the reduced circuitry size, the sensor system can be directly integrated within a cylinder. In the case of mass production, the costs per unit can also be significantly reduced.

On the other hand, the distance between single resonances becomes smaller for longer resonators (Fig. 2), which can lead to a difficult resonance separation and higher measurement error. Hence, higher resonances with $n = 4..7$ should be taken into account for higher sensor precision. This leads to the requirement that the frequency range covered by the VCO should be as wide as possible. This is a very demanding requirement for a fully monolithically integrated VCO.

The signal source employed in the current sensor implementation is a feedback MMIC-VCO described in [9]. It offers an excellent combination of bandwidth (4.6–7.2 GHz, i. e. 45%), output power ($P_{\text{out}} \approx 14.1 \pm 0.7 \text{ dBm}$), high tuning linearity, and temperature stability. It is manufactured using the PH25 pHEMT process of the United Monolithic Semiconductors S.A.S. (UMS).

The detector circuit considered here employs a pHEMT in common-source configuration. The RF signal, whose power-level alterations have to be detected, drives the gate-source diode of the transistor while controlling its drain

¹The calculations were performed for the initial dimension of the resonator cavity listed in Table I.

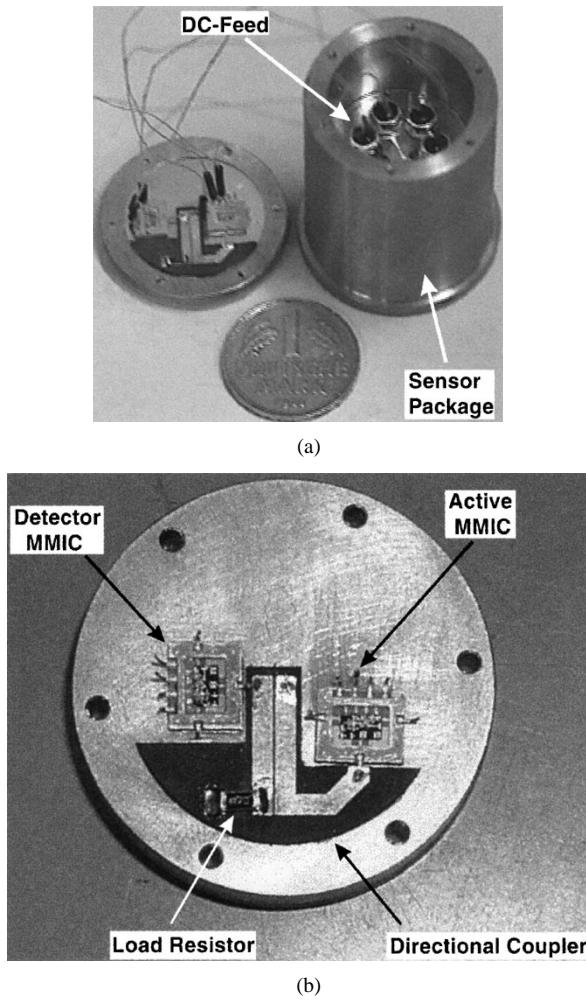


Fig. 5. Photograph of the packaged sensor. (a) The entire system. (b) Close-up view of the active area.

current. Therefore, the dc part of this current is inverted proportionally to the level of the input power.

III. SENSOR-SYSTEM TEST AND EXPERIMENTAL RESULTS

A. Sensor-System Assembly

A sensor prototype was manufactured using the derived measurement procedure and the proposed sensor-system structure (Fig. 3). Fig. 5(a) and (b) shows photographs of the packaged sensor system. The packaged MMICs—the active one as well as the detector one—together with the directional coupler are glued onto a brass disc that also carries the coupling structure and provides grounding and an excellent heat sink. Due to cost reasons and for higher flexibility, the VCO and the detector are integrated on a single die. Thus, identical chips are used for “Active MMIC” and “Detector MMIC.”

B. Measurement Results

The behavior of the sensor prototype was measured using a testing system employing a step motor, which allows one to drive the piston longitudinally with a minimal step of $\Delta l = 5 \mu\text{m}$. The tuning voltage of the VCO was provided

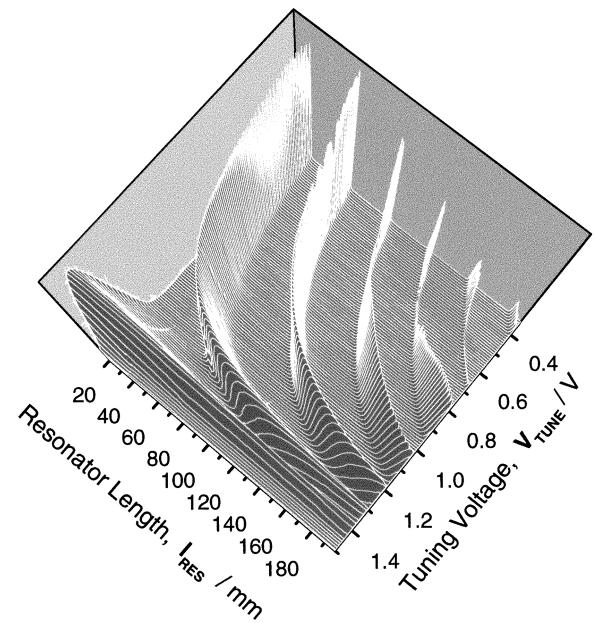


Fig. 6. Detector output voltage as a function of the VCO tuning voltage and the resonator length presented in a 3-D plot.

by the dc-voltage source HP3631E and was altered in steps of $\Delta V_{\text{TUNE}} = 5 \text{ mV}$. The output detector voltage V_{DET} was measured by the multimeter HP4537. The entire measurement setup was controlled by the software tool LABVIEW running on a standard PC.

Fig. 6 shows the obtained values of the detector-output voltages as a function of the tuning voltage and the resonator length $V_{\text{det}} = f(V_{\text{TUNE}}, l_{\text{res}})$. In this three-dimensional (3-D) plot, one can recognize that the E_{01n} resonance mode of the cylindrical structure was detected only and the distribution of the resonance frequencies corresponds to the theoretical behavior of the E_{01n} mode in a cylindrical resonator cavity.

Furthermore, all of these resonances (maxima of V_{det}) were detected. A comparison with the results of the resonator characterization by means of the network analysis showed that all resonances could be also recognized correctly.

Analyzing Figs. 2 and 6, one can see that the resonance-frequency gradient with respect to the resonator length decreases with increasing values of l_{res} . This behavior implies that the minimal detectable resonator-length alteration is to look for at higher length values for the case that the next-higher resonance frequency is not detectable yet. For the considered frequency-tuning and resonator-length ranges, this “critical” length was determined to be as high as $l_{\text{res}} = 189 \text{ mm}$. Fig. 7 demonstrates the detector output for value of the resonator length of $l_{\text{res}} = 189$ and 189.5 mm . The inset within this figure shows that this small length difference is resolvable with the sensor. Assuming that this change is also applicable and detectable by a computer using a certain algorithm, the length resolution of the sensor system would be under $\Delta l = 1 \text{ mm}$.

Performing dynamic measurements, almost no variations of the detector-output voltage were found up to 100 tuning-voltage sweeps per second. Above this frequency, the position of the resonance peaks as well as their heights start to change.

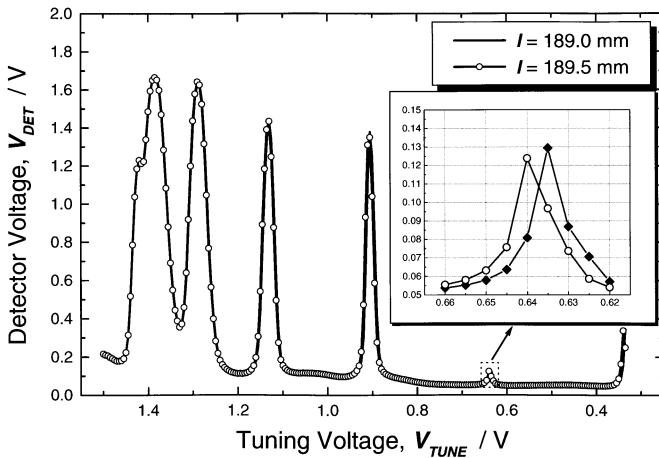


Fig. 7. Detector output voltage as a function of tuning voltage at the resonator-length values of $l_{\text{res}} = 189.0$ and 189.5 mm.

IV. EVALUATING ALGORITHM

The mathematical algorithm has to accomplish the task of the actual resonator-length extraction from the measured detector-output voltage array. It mainly determines the accuracy and the resolution of the sensor system implemented.

This section represents an implementation of the evaluating procedure. The approach employs the cross-correlation technique. The idea behind this is based on the following considerations. Generally, cross correlation between two arbitrary functions $x(t)$ and $y(t)$ is defined as follows:

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot y(t - \tau) dt \quad (1)$$

This function exhibits a maximum for a value of τ , at which the functions $x(t)$ and $y(t)$ are most “similar” to each other. Thus, if a correlation function could be defined that unequivocally corresponds to a particular resonator length, its cross correlation with the detector output should help to extract the actual resonator length.

A. Formal Description of the Algorithm

The detector output is an experimental measure and acts as an input for the algorithm under development. It is a function of the tuning voltage and, at the same time, it changes with the unknown resonator length as clearly demonstrated in Fig. 6. Therefore, the correlation function demanded—called Y here—also has to be a function of the same two variables. In the further course of this section, a function $Y(l_{\text{res}}, V_{\text{TUNE}})$ is introduced that is employed within the evaluating algorithm.

Consider the expression for the resonance-frequency distribution of the E_{01n} -mode within an ideal cylindrical cavity resonator

$$f_{01n} = \frac{1}{2\pi} \cdot \frac{c_0}{\sqrt{\varepsilon_r \mu_r}} \cdot \sqrt{\left(\frac{j_{01}}{r}\right)^2 + \left(\frac{n \cdot \pi}{l_{\text{res}}}\right)^2}. \quad (2)$$

In the above equation, c_0 is the light velocity in vacuum. The parameter ε_r is the permittivity of the dielectric material and μ_r is its magnetic constant. The zero of the Bessel's function that

corresponds to the considered mode is $j_{01} = 2.405$. Using the definitions

$$f_0 := \frac{c_0 \cdot j_{01}}{2\pi \cdot r \cdot \sqrt{\varepsilon_r \mu_r}} \text{ and } C := \pi^2 \left(\frac{r}{j_{01}}\right)^2 \quad (3)$$

(2) can be rewritten as follows:

$$f_n := f_0 \cdot \sqrt{1 + C \cdot \left(\frac{n}{l_{\text{res}}}\right)^2}, \quad n \in \mathbb{N}_0. \quad (4)$$

The frequency dependence of the MMIC-VCO can be expressed by a linear function of the tuning voltage

$$f = a + b \cdot V_{\text{TUNE}}. \quad (5)$$

The assumption (5) is justified by the fact that the oscillation-frequency dependence on the tuning voltage is fairly linear as shown in [9].

With (2)–(5), the following relationship can be set:²

$$V_{\text{res}}(l_{\text{res}}, n) = \frac{1}{b} \cdot \left[\underbrace{(a + b \cdot V_0)}_{f_0} \cdot \sqrt{1 + C \cdot \left(\frac{n}{l_{\text{res}}}\right)^2} - a \right] \quad (6)$$

where V_0 is the tuning voltage, at which the basis resonance E_{010} is detected. The above expression defines the values of the tuning voltage at which the resonances—that correspond to the resonance mode E_{01n} —should appear within the cylindrical cavity for a given resonator length l_{res} . The natural factor $n \in \mathbb{N}_0$ denotes different resonances belonging to the mode E_{01n} .

Now, the following function array, which should be used as the correlation function within the algorithm, can be defined:

$$Y(l_{\text{res}}, V_{\text{TUNE}}) \equiv \sum_{n=0}^{n=n_{\text{max}}} \delta(V_{\text{res}}(l_{\text{res}}, n) - V_{\text{TUNE}}) \quad (7)$$

where δ is a simple Dirac-impulse and V_{res} is defined by (6). For a particular resonator length, the defined function Y returns a row of Dirac-pulses at the values of the tuning voltage $V_{\text{TUNE}} = V_{\text{res}}$ defined in (6). At the tuning voltage $V_{\text{TUNE}} \neq V_{\text{res}}$, the function Y is zero. The parameter n_{max} can be easily found from the frequency range considered and the maximal resonator length to be measured.

After performing a cross-correlation calculation between the measured detector output X and the defined correlation function Y , an array of cross-correlation functions can be found. At the demanded value $l_0 = l_{\text{res}}$, this function array exhibits an absolute maximum. Therefore, the determination of this maximum array delivers the value of the actual cavity-resonator length l_{res} .

B. Determination of the Actual Cavity Length

Using the developed algorithm based on the cross-correlation technique, the resonator length was calculated from the measured

²In (6), the variable V_{TUNE} from (5) is renamed to V_{res} to avoid the mix-up between the *actual* VCO tuning voltage V_{TUNE} and the value V_{res} *calculated* using the ideal resonance distribution from (6).

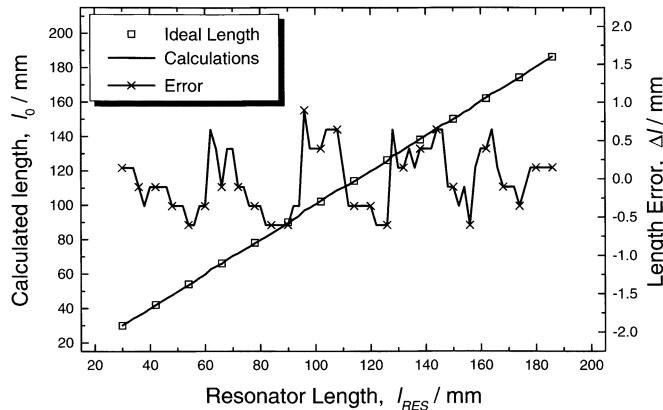


Fig. 8. Calculated length of the resonator and the length-determination error as a function of the actual length at room temperature. The algorithm procedure based on the cross-correlation technique was used for these calculations.

TABLE II
PERFORMANCE SUMMARY OF THE SENSOR SYSTEM EMPLOYING THE ALGORITHM BASED ON THE CROSS-CORRELATION TECHNIQUE

Characteristic	Dimension	Value
Minimal Length Resolvable	$l_{0,\min} / \text{mm}$	30
Length Resolution	$\Delta l / \text{mm}$	<1
Max. Calculation Error	$\Delta l / l_{res} / \%$	1%

TABLE III
MEASURED PERFORMANCE OF THE SENSOR SYSTEM REALIZED

Minimal Length Detectable	$l_{res,\min} / \text{mm}$	30
Length Resolution Using the Algorithm Developed	$\Delta l / \text{mm}$	<1
Max. Calculation Error	$\Delta l / l_{res} / \%$	1%
Dynamics (Hardware Limit)	f_{sweep} / Hz	100
Max. Operation Temperature	$T_{\max} / ^\circ\text{C}$	100

values of the detector output at room temperature. The tuning voltage was discretized in steps of $\Delta V = 5 \text{ mV}$ resulting in 241 values of V_{det} considered for some particular resonator length. The minimal length step was chosen to be $\Delta l_{\text{res}} = 0.5 \text{ mm}$ within the range of $l_{\text{res}} = 10\text{--}210 \text{ mm}$. With this parameters, 401 length values were taken into account.

The proposed algorithm works perfectly for the resonator length under consideration. Fig. 8 shows the obtained values l_0 as a function of the actual resonator length l_{res} . The length-determination error $\Delta l = l_0 - l_{\text{res}}$ is also presented in Fig. 8. Within the entire length range considered, resonator length were correctly determined with an accuracy of at least $\pm 1 \text{ mm}$. The same submillimeter accuracy could be achieved within the investigated temperature range of $T = 20 \text{ }^\circ\text{C}\text{--}100 \text{ }^\circ\text{C}$. Furthermore, the length difference of $\Delta l_0 = 1 \text{ mm}$ could be clearly resolved.

Table II summarizes the performance of the developed and manufactured integrated sensor for cavity-length measurement employing the algorithm, which is based on the cross-correlation approach. The evaluating technique not only delivers the actual cavity length, but is also able to calculate the permittivity of

the filling dielectric material. Knowing its temperature dependence, the actual temperature within the structure can be also extracted.

V. CONCLUSION

This paper presents a solution for a classic problem of length measurement in closed structures by means of microwaves. The basic measurement principle is based on the detection of the resonance-frequency distribution within a cavity resonator. The proposed measurement principle can be also used to determine the length of a cavity with an arbitrary cross section.

Here, the feasibility of the proposed sensor concept has been successfully demonstrated for an example of a particular cylindrical cavity. Table III summarizes the main performance of the integrated sensor prototype for cavity-length measurement.

The proposed mathematical algorithm allows one the evaluation of the sensor output with submillimeter accuracy over a wide temperature range. Furthermore, the permittivity of the filling dielectric material can be also extracted.

The excellent combination of the measurement speed, accuracy, and length resolution of the sensor system designed and manufactured in this work makes it very interesting for various industrial applications, e.g., in automotive shock absorbers [10].

ACKNOWLEDGMENT

The authors would like to thank P. Kießlich, Darmstadt University of Technology, Darmstadt, Germany, for MMIC packaging and sensor assembly.

REFERENCES

- [1] E. G. Nyfors and P. Vainicainen, *Industrial Microwave Sensors*. Norwood, MA: Artech House, 1989.
- [2] A. L. Merlo, "Combustion chamber investigations by microwave resonances," *IEEE Trans. Ind. Electron.*, vol. IE-17, pp. 60–66, Apr. 1970.
- [3] T. Yamanaka, M. Esaki, and M. Kinoshita, "Measurement of TDC in engine by microwave technique," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 1489–1494, Dec. 1985.
- [4] G. Bianchi, M. Dionigi, D. Fioretto, and R. Sorrentino, "A microwave system for moisture monitoring in wet powders for industrial applications," in *1999 IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, Anaheim, CA, June 1999, pp. 1603–1606.
- [5] (2000) Product Catalogue: Sensors&Systems. Micro-Epsilon Meßtechnik GmbH&Co., Ortenburg, KG, Germany. [Online]. Available: <http://www.micro-epsilon.de/eng/index.htm>
- [6] D. Webster, "A pulsed ultrasonic distance measurement system based upon phase digitizing," *IEEE Trans. Instrum. Meas.*, vol. 43, pp. 578–582, Aug. 1994.
- [7] G. S. Woods, D. L. Maskell, and M. V. Mahoney, "A high accuracy microwave ranging system for industrial applications," *IEEE Trans. Instrum. Meas.*, vol. 42, pp. 812–816, Aug. 1993.
- [8] A. R. Howland, "Testing microwave transmission lines," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Atlanta, GA, June 1974, pp. 258–260.
- [9] A. Megej, K. Beilenhoff, and H. L. Hartnagel, "Conditions for broadband MMIC voltage-controlled oscillators based on theory and experiments," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 3, Phoenix, AZ, May 2001, pp. 1419–1422.
- [10] C. D. Hamann, R. Baican, B. Zerbe, H. L. Hartnagel, M. Schüßler, and Deutsches Patent-und Markenamt, Munich, Germany, "Schwingungsdämpfer für Kraftfahrzeuge," Patentschrift DE 197 10 911 C2, 1999.

Alexander Megej (S'98–M'02) studied at the State University of Telecommunications, St. Petersburg, Russia and Queen's University of Belfast, Belfast, U.K. He received the Dipl.-Ing. and the Dr.-Ing. (Ph.D.) degrees in electrical engineering from Darmstadt University of Technology, Darmstadt, Germany, in 1998 and 2002, respectively.

From 1998 until the beginning of 2002, he was with the Institute of Microwave Engineering, Darmstadt University of Technology, where he was engaged in MMIC design for smart microwave sensors. Since May 2002, he has been a Post-Doctoral Fellow with the Laboratory for EM-Fields and Microwave Electronics, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. His research interests include circuit design at cryogenic temperatures.

Klaus Beilenhoff (M'90) received the Dipl.-Ing. degree in electrical engineering and the Dr. Ing. degree from the Technical University of Darmstadt, Darmstadt, Germany, in 1989 and 1995, respectively.

From 1995 until the beginning of 2000, he worked as a Research Assistant at the Institut für Hochfrequenztechnik, Technical University of Darmstadt, where he was engaged in the design and field-theoretical analysis of monolithic microwave integrated circuits (MMICs). From February 2000 till July 2001, he was a member of the "Austauschgruppe Forschung und Technologie" at DaimlerChrysler AG, Stuttgart, Germany. In different projects, he dealt with MMIC design and automotive Bluetooth applications. Since July 2001, he has been employed with United Monolithic Semiconductors, Orsay, France, where he is currently working on packaging solutions for microwave and millimeter-wave MMICs.

Martin Schüßler (M'00) was born in Germany in 1967. He received the Dipl.-Ing. and Ph.D. degrees from the Technical University of Darmstadt, Darmstadt, Germany, in 1992 and 1998, respectively.

He is currently working in the field of antennas at the Technical University of Darmstadt.

Andreas Ziroff received the degree in electrical engineering from the Technical University of Darmstadt, Darmstadt, Germany, in 2000. He is currently working toward the Ph.D. degree at the University of Ulm, Ulm, Germany.

He joined Siemens Corporate Technology, Munich, Germany, in August 2000 and has been involved in near-millimeter-wave front-end and antenna design. His research interests include passive structures in multilayer ceramics and their computer modeling at microwave frequencies.

Bastian Mottet (S'99) was born in Krefeld, Germany, in 1974. He received the Dipl.-Ing. degree in electrical engineering from the Technical University of Darmstadt, Darmstadt, Germany, in 1999. He is currently working toward the Ph.D. degree at the Institute of Microwave Engineering at the same university.

His research concerns reliability aspects of integrated III–V compound semiconductors and their contact systems and the development of devices for terahertz applications.

Oktay Yilmazoglu (S'99) was born in Mainz, Germany, in 1973. He received the Dipl.-Ing. degree in electrical engineering from the Technical University of Darmstadt, Darmstadt, Germany, in 1999. He is currently working toward the Ph.D. degree at the Institute of Microwave Engineering at the same university.

He is currently working in the field of III–V semiconductor based magnetic field sensors and vibration sensors, as well as III–V compound field-emission devices for sensor, electron source, and microwave applications.

Kabula Mutamba was born in Kamina, Congo, in 1964. He received the Dipl.-Ing. degree in engineering physics and the Dr.-Ing. degree in electrical engineering from the Technical University of Darmstadt, Darmstadt, Germany, in 1994 and 1998, respectively.

He is currently a Post-Doctoral Research Associate with the Institute of Microwave Engineering, Technical University of Darmstadt. His research concerns several concepts of integrated III–V compound microelectromechanical systems (MEMS) and sensors for applications in mechanical engineering and RF measurement techniques.

Claus D. Hamann, photograph and biography not available at time of publication.

Roman Baican (A'95–SM'97) was born in Blaj, Romania, in 1940. He received the M.S. degree in physics and Ph.D. degree in solid-state physics from the Babes-Bolyai University, Cluj, Romania, in 1962 and 1972, respectively.

From 1962 to 1969, he was an Assistant with the Faculty of Physics, during which time he was involved in electron spin resonance spectroscopy and various microwave measurement techniques. From 1969 to 1979, he assisted at the Institute of Atomic Physics, Bucharest, Romania, where he was involved in the field of low-noise amplifiers (MASER) and parametric and transferred-electron amplifiers. From 1979 to 1982, he was with the Institute of Isotopic and Molecular Technology, Cluj, Romania, where he was involved in laser spectroscopy and IR detectors with ferroelectric materials. Since 1982, he has been in Germany, where, from 1982 to 1984, he was with the J. W. Goethe University, Frankfurt/Main, Germany, during which time he studied the new active media for IR power pulse laser. From 1984 to 1987, he was with the Department of Microwave Communications, Standard Elektrik Lorentz (SEL), Pforzheim, Germany. He is currently a Project Engineer with the Technical Development Center, Adam Opel AG (GM), Rüsselsheim, Germany, where he is involved in microwave applications to the automotive industry. He has authored or coauthored over 70 publications and four books. He holds eight patents in the above field.

Dr. Baican was a recipient of the Romania Academy Award for Physics.

Hans L. Hartnagel (SM'72–F'92) received the Dipl.-Ing. degree from the Technical University of Aachen, Aachen, Germany, in 1960, and the Ph.D. and Dr. Eng. degrees from the University of Sheffield, Sheffield, U.K., in 1964 and 1971, respectively.

After having worked for a short period with Telefunken, Ulm, Germany, he joined the Institute National des Sciences Appliquées, Villeurbanne, Rhône, France, and then the Department of Electronic and Electrical Engineering, University of Sheffield, as a Member of Staff. In January 1971, he became Professor of Electronic Engineering with the University of Newcastle upon Tyne, Newcastle upon Tyne, U.K. Since October 1978, he has been the Professor of High Frequency Electronics, Technical University of Darmstadt, Darmstadt, Germany. He has authored several books and numerous scientific papers on microwave semiconductor devices and their technology and circuits. He has held many consulting positions, partly while on temporary leave of absence from his university positions.

Dr. Hartnagel was the recipient of the 1990 Max-Planck-Prize, the 1994 Dr. h.c. presented by the University of Rome Tor Vergata, Rome, Italy, and the 1999 Dr. h.c. from the Technical University of Moldova, Kishinev.